

JAXA's Earth Observation Program and A-Train

Haruhisa Shimoda, JAXA/Tokai University

Keiji Imaoka, Keizo Nakagawa (JAXA)

A-Train Symposium

New Orleans, MS

October 26, 2010

AMSR-E on Aqua

Mission status

- Currently participating project to A-Train from JAXA Earth observing systems.
- Continuous observation over 8-years after the launch on May 4, 2002 onboard NASA's EOS Aqua satellite.
- Stable brightness temperature records, except the loss of 89GHz-A data from November 2004.

Instrument characteristics

- JAXA-developed multi-frequency microwave radiometer, which is capable of observing various parameters related to water.
- Higher spatial-resolution by large size antenna.
- C-band (6.9GHz) channels for estimating SST and soil moisture.
- Afternoon (1:30 pm) equatorial crossing time that is currently unique for microwave radiometers.

Pre-launch AMSR-E in Tsukuba Space Center

AMSR-E Products

Integrated water vapor

Sea Ice

Sea surface temperature

GCOM Mission

- Continuation of ADEOS II
- Contribution to GEOSS
- Climate, Weather, Water, Ecosystem, Agriculture, etc. in GEOSS 9 areas
- Focus on Climate change / Global warming and Water cycle committed in Summit
- Contribution to operational fields like weather forecast, fisheries, etc.
- Long term continuous measurements

Scientific Targets

- Accurate estimation of aerosol radiative forcing
- Validation of climate models
- Accurate estimation of primary production
- Better understanding of coastal phenomena
- Better understanding of sea ice trend

Operational Applications

- Input to NWP
- Extreme weather forecasting
- Fisheries
- Navigation
- Coastal management
- Crop yield estimation
- Monitoring forest decrease
- Monitoring volcano eruptions
- Monitoring forest fire

GCOM satellites

- GCOM-W1
 - AMSR2 (Advanced Microwave Scanning Radiometer 2)
 - Planned to be launched on Nov., 2011
- GCOM-C1
 - SGLI (Second generation Global Imager)
 - Planned to be launched in fiscal 2014
- Plan for the 2nd and 3rd generations
 - GCOM-W2 (in 2015),GCOM-W3 (in 2019)
 - GCOM-C2 (in 2018),GCOM-C3 (in 2022)

GCOM 1st Generation

GCOM-C1 (Climate)

Instrument	Advanced Microwave Scanning Radiometer-2		
Orbit	Sun Synchronous orbit Altitude: 699.6km (on Equator) Inclination: 98.2 degrees Local sun time: 13:30+/-15 min		
Size	5.1m (X) * 17.5m (Y) * 3.4m (Z) (on-orbit)		
Mass	1991kg		
Power gen.	More than 3880W (EOL)		
Launch	JFY 2011 by H-IIA Rocket		
Design Life	5-years		

Instrument	Second-generation Global Imager		
Orbit	Sun Synchronous orbit Altitude: 798km (on Equator) Inclination: 98.6 deg. Local sun time: 10:30+/- 15min		
Size	4.6m (X) * 16.3m (Y) * 2.8m (Z) (on orbit)		
Mass	2093kg		
Power gen.	More than 4000W (EOL)		
Launch	JFY 2014 by H-IIA Rocket		
Design Life	5-years		

Overview of GCOM Products

AMSR2 Instrument

Stowed (during launch)

- Deployable main reflector system with 2.0m diameter.
- Frequency channel set is identical to that of AMSR-E except 7.3GHz channel for helping RFI mitigation.
- Two-point external calibration with the improved HTS (hot-load).
- Deep space calibration maneuver to check consistency between main reflector and CSM.
- Add a redundant momentum wheel to increase reliability.

GCOM-W1/AMSR2 characteristics					
Scan and rate	Conical scan at 40 rpm				
Antenna	Offset parabola with 2.0m dia.				
Swath width	1450km				
Incidence angle	Nominal 55 degrees				
Digitization	12bits				
Dynamic range	2.7-340K				
Polarization	Vertical and horizontal				

AMSR2 Channel Set					
Center Freq. [GHz]	Band width [MHz]	Pol.	Beam width [deg] (Ground res. [km])	Sampling interval [km]	
6.925/ 7.3	350	V and H	1.8 (35 x 62)		
10.65	100		1.2 (24 x 42)	10	
18.7	200		0.65 (14 x 22)	10	
23.8	400		0.75 (15 x 26)		
36.5	1000		0.35 (7 x 12)		
89.0	3000		0.15 (3 x 5)	5	

AMSR2

(SU)

XA Improvement of HTS(Hot Load)

CSM: Cold Sky Mirror, HTS: High Temperature noise Source, TCP: Thermal Control Panel

HTS and CSM **Proto Flight Model** under vibration test(Dec. 2009)

Improvement of HTS(Hot Load)

- (1) Temperature inside HTS is kept constant (= 20 degrees C) using heaters on 5 walls of HTS and TCP.
- (2) Sunshields attached to HTS and TCP minimize the sun light reflection into HTS.
- (3) TCP thermally isolates HTS from SU structure (much colder than HTS).

HTS: High Temperature noise Source, TCP: Thermal Control Panel, SU: Sensor Unit

- **♦** Maximum temperature difference inside HTS : less than 2K
- Estimated brightness temperature accuracy :
 - 0.2 K (Variable bias during orbit, season, design life)
 - > 0.1 K (Random due to quantization)

Downlink

- Freq: 8245MHz
- Polarization: RHCP
- Modulation : OQPSK
- Data Rate: 10Mbps (20Msps)
- Coding: CCSDS, Reed-Solomon, convolution

GCOM Project Status

GCOM-W1

- Proto-flight Test (PFT) of AMSR2 flight model was finished and AMSR2 was integrated on the satellite in September.
- Satellite system PFT already started and will continue until July 2011.
- GCOM-W1 will be launched in the latter half of JFY 2011.

GCOM-C1

- System design and EM design of GCOM-C1 including SGLI started in July 2009.
- SGLI PDR was over in March, 2010. The manufacturing of SGLI EM has been performed.
- System PDR was finished in July, 2010.

GCOM-W1 System

Cross Calibration with AMSR-E

- AMSR-E and AMSR2 will remain in A-train at least 1 year.
- Cross calibration will be conducted during this 1 year period.
- New calibration parameters of AMSR-E will be determined.
- The whole AMSR-E products will be reprocessed using this new parameters.

AMSR Series in A-Train

Synergy (not limited below)

- Global precipitation including light/solid precipitation in high latitudes by using AMSR and CloudSat.
- High-resolution, frequent, and accurate SST by combining AMSR, MODIS, and AIRS information.
- Accurate land parameter retrieval including soil moisture and snow by using MODIS vegetation cover.
- Complementary observation of sea ice by AMSR all-weather measurement and MODIS higher resolution observation.

Cross Calibration

 Direct cross-calibration with AMSR-E. Propagation of results to previous AMSR-E data to construct consistent data set.

A-Train and JAXA EO Programs

- Many relationships
 - GPM and GCOM-W1
 - EarthCARE and A-Train capability with CloudSat,
 CALIPSO, MODIS, and CERES.
 - GOSAT and OCO-2
 - SMILES/ISS and MLS/Aura
 - GCOM-C/SGLI and PARASOL (polarization)

Land Record Scatterometer on GCOM-W2

- Dual Frequency Scatterometer (DFS)
- Ku band and C band
- around 2m aperture
- All weather monitoring
- All wind speed monitoring

AMSR3 on GCOM-W2

- Addition of scatterometer
- Addition of high frequency channels (150-190GHz) for solid precipitation and water vapor sounding
- Also, join the A-train at least 1 year